Beyond highway dimension: small distance labels using tree skeletons

Adrian Kosowski and Laurent Viennot

Inria - Univ. Paris Diderot (Irif lab.)

Context: very fast shortest path computation

Recent progress, in particular for transportation networks.

Two ingredients:

- Tool: precompute small "hub sets".
- Graph property: small "hub sets" do exist, e.g. in road networks.

= ? >

Context: very fast shortest path computation

Recent progress, in particular for transportation networks.

Two ingredients:

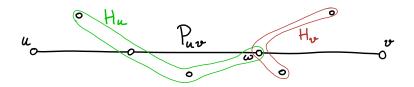
- Tool: precompute small "hub sets".
- Graph property: small "hub sets" do exist, e.g. in road networks

← ? ⇒

Hub sets

Problem

Given a graph G, assign a hub set $H_u \subseteq V(G)$ to each node u, s.t. for all u, v there exists $w \in H_u \cap H_v$ with $w \in P_{uv}$.



 $\textbf{Application}: Distance \ labels: L_u = \{(w,d(u,w)): w \in H_u\}$

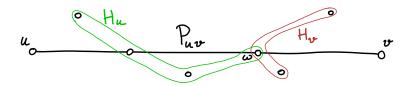
Introduced by [Gavoille et al. '04; Cohen et al. 2003], applied to road networks [Abraham et al. 2010-2013], and other practical networks [Akiba et al. 2013]. Approximability results: [Babenko et al. 2013, Angelidakis et al. 2017].

= ? ⇒

Hub sets

Problem

Given a graph G, assign a hub set $H_u \subseteq V(G)$ to each node u, s.t. for all u, v there exists $w \in H_u \cap H_v$ with $w \in P_{uv}$.



Application : Distance labels : $L_u = \{(w, d(u, w)) : w \in H_u\}$

Introduced by [Gavoille et al. '04; Cohen et al. 2003], applied to road networks [Abraham et al. 2010-2013], and other practical networks [Akiba et al. 2013]. Approximability results: [Babenko et al. 2013, Angelidakis et al. 2017].

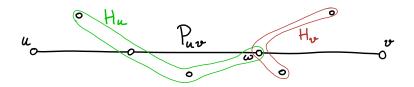
← ? ⇒

 2 / 3 3 / 21

Hub sets

Problem

Given a graph G, assign a hub set $H_u \subseteq V(G)$ to each node u, s.t. for all u, v there exists $w \in H_u \cap H_v$ with $w \in P_{uv}$.



 $\textbf{Application}: \textbf{Distance labels}: L_u = \{(w, d(u, w)): w \in H_u\}$

Introduced by [Gavoille et al. '04; Cohen et al. 2003], applied to road networks [Abraham et al. 2010-2013], and other practical networks [Akiba et al. 2013]. Approximability results: [Babenko et al. 2013, Angelidakis et al. 2017].

≘ ? ⇒

What graph property guaranties small hub sets?

[Abraham et al. 2010]: Small highway dimension!

This talk: More generally, small skeleton dimension!

 \Leftarrow ? \Rightarrow

What graph property guaranties small hub sets?

[Abraham et al. 2010]: Small highway dimension!

This talk: More generally, small skeleton dimension!

What graph property guaranties small hub sets?

[Abraham et al. 2010]: Small highway dimension!

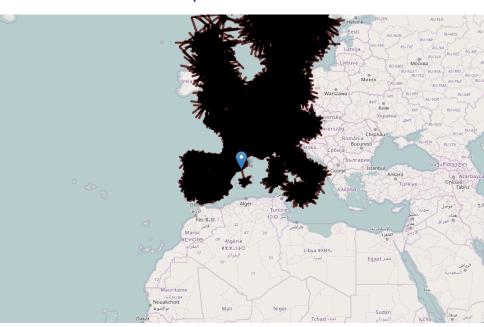
This talk: More generally, small skeleton dimension!

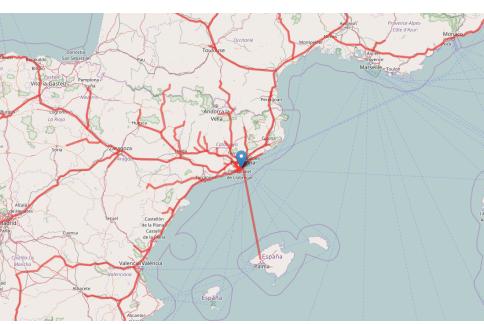
Skeleton dimension

The skeleton dimension k of G is the maximum "width" of a "pruned" shortest path tree.

← ? ⇒

Barcelona shortest path tree





Assumptions

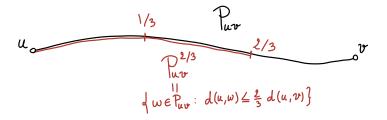
A directed graph G with

unique shortest paths

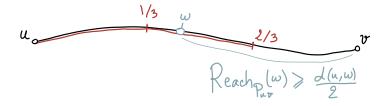
and integer edge lengths (aspect ratio is O(D)).

In the presentation: unweighted undirected graph G.

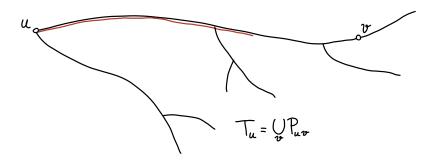
← ? ⇒



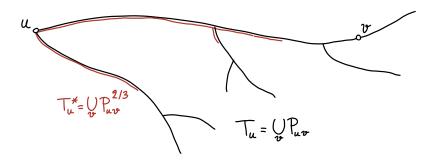
← ? ⇒



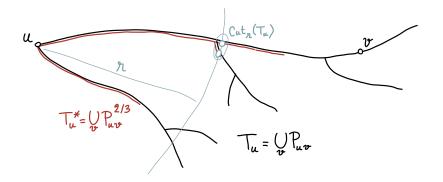
 \Leftarrow ? \Rightarrow



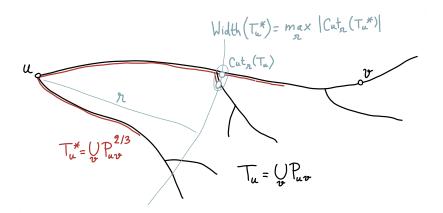
←?⇒



= ? ⇒ 5/8 8 / 21

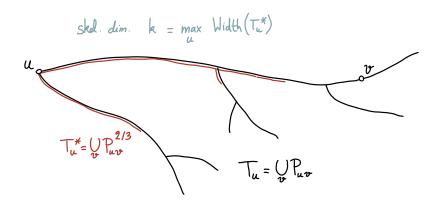


 \Leftarrow ? \Rightarrow



 \Leftarrow ? \Rightarrow

7/8 8 / 21



 \Leftarrow ? \Rightarrow

Theorem

Given a graph G with skeleton dimension k and diameter D, a simple random sampling technique allows to find in polynomial time hub sets with size $O(k \log D)$ on average and maximum size $O(k \log \log k \log D)$ with high probability.

Comparision with highway dimension h:

- more general: k < h
 - (some graphs have $h = \Omega(\sqrt{n})$ and $k = O(\log n)$),
 - shorter: O(k log log k log D) vs O(h log h log D)
 (for polynomial time construction)
 - road networks: insight on grids (Manhattan like networks).

← ? ⇒

Theorem

Given a graph G with skeleton dimension k and diameter D, a simple random sampling technique allows to find in polynomial time hub sets with size $O(k \log D)$ on average and maximum size $O(k \log \log k \log D)$ with high probability.

Comparision with highway dimension h:

- more general : $k \le h$ (some graphs have $h = \Omega(\sqrt{n})$ and $k = O(\log n)$),
- shorter: O(k log log k log D) vs O(h log h log D) (for polynomial time construction),
- road networks: insight on grids (Manhattan like networks).

≥ ? ⇒

Theorem

Given a graph G with skeleton dimension k and diameter D, a simple random sampling technique allows to find in polynomial time hub sets with size $O(k \log D)$ on average and maximum size $O(k \log \log k \log D)$ with high probability.

Comparision with highway dimension h:

- more general : $k \le h$ (some graphs have $h = \Omega(\sqrt{n})$ and $k = O(\log n)$),
- shorter: O(k log log k log D) vs O(h log h log D) (for polynomial time construction),
- road networks: insight on grids (Manhattan like networks).

⇒? *⇒*

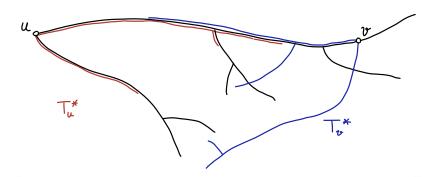
Theorem

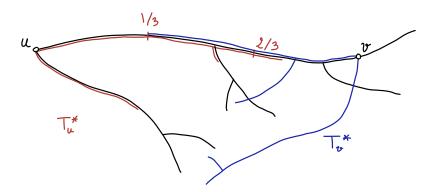
Given a graph G with skeleton dimension k and diameter D, a simple random sampling technique allows to find in polynomial time hub sets with size $O(k \log D)$ on average and maximum size $O(k \log \log k \log D)$ with high probability.

Comparision with highway dimension h:

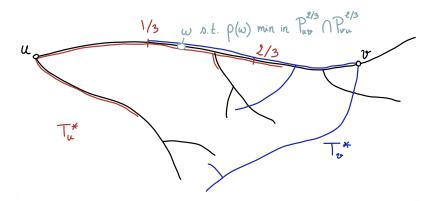
- more general : $k \le h$ (some graphs have $h = \Omega(\sqrt{n})$ and $k = O(\log n)$),
- shorter: O(k log log k log D) vs O(h log h log D) (for polynomial time construction),
- road networks: insight on grids (Manhattan like networks).

← ? *⇒*

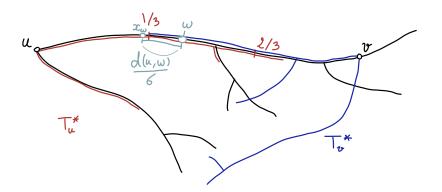




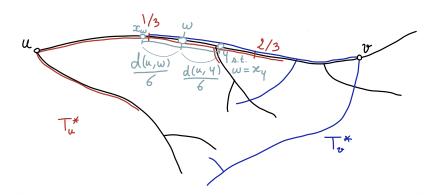
≘ ? ⇒



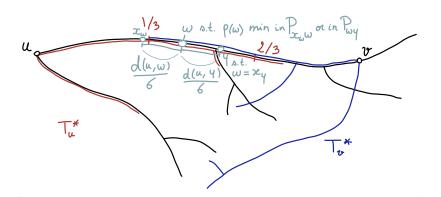
 \Leftarrow ? \Rightarrow



<= ? ⇒



 \Leftarrow ? \Rightarrow



∈ ? ⇒

Draw $\rho(\mathbf{w}) \in [0,1]$ u.a.r. for all $\mathbf{w} \in \mathbf{V}(\mathbf{G})$.

$$H_{u} = \{ w \mid \rho(w) \text{ min. in } P_{x_{w}w} \} \cup \{ x_{y} \mid \rho(x_{y}) \text{ min. in } P_{x_{y}y} \}$$

(Can be computed in $\widetilde{O}(n+m)$ separately for each node with shared randomness.)

A sub-path P_{xyy} has length $\frac{d(u,y)}{6}$ and generates a hub in H_u with probability at most $\frac{12}{d(u,y)}.$

$$\textstyle \mathsf{E}[|\mathsf{H}_u|] \leq \sum_{y \in V(\mathsf{T}_u^*)} \frac{12}{\mathsf{d}(u,v)} \leq \sum_r |\mathcal{C}\mathsf{ut}_r(\mathsf{T}_u^*)| \, \frac{12}{r} = O(k \log D)$$

← ? ⇒

Draw $\rho(\mathbf{w}) \in [0,1]$ u.a.r. for all $\mathbf{w} \in \mathbf{V}(\mathbf{G})$.

$$H_u = \{ w \mid \rho(w) \text{ min. in } P_{x_ww} \} \cup \left\{ x_y \mid \rho(x_y) \text{ min. in } P_{x_yy} \right\}$$

(Can be computed in $\widetilde{O}(n+m)$ separately for each node with shared randomness.)

A sub-path P_{xyy} has length $\frac{d(u,y)}{6}$ and generates a hub in H_u with probability at most $\frac{12}{d(u,y)}$.

$$\textstyle \mathsf{E}[|\mathsf{H}_u|] \leq \sum_{y \in V(\mathsf{T}_n^*)} \frac{12}{\mathsf{d}(u,v)} \leq \sum_r |\mathcal{C}\mathsf{ut}_r(\mathsf{T}_u^*)| \, \frac{12}{r} = \mathcal{O}(k\log \mathsf{D})$$

Hub set selection

Draw $\rho(\mathbf{w}) \in [0,1]$ u.a.r. for all $\mathbf{w} \in \mathbf{V}(\mathbf{G})$.

$$H_u = \{ \mathbf{w} \mid \rho(\mathbf{w}) \text{ min. in } P_{\mathbf{x}_{\mathbf{w}}\mathbf{w}} \} \cup \left\{ \mathbf{x}_{\mathbf{y}} \mid \rho(\mathbf{x}_{\mathbf{y}}) \text{ min. in } P_{\mathbf{x}_{\mathbf{y}}\mathbf{y}} \right\}$$

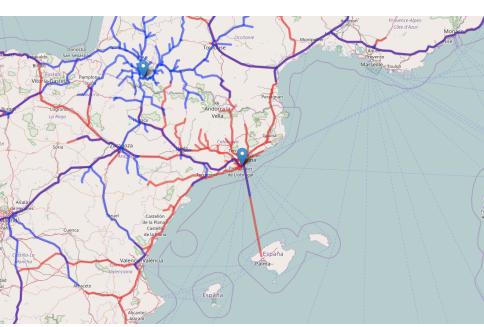
(Can be computed in $\widetilde{O}(n+m)$ separately for each node with shared randomness.)

A sub-path P_{xyy} has length $\frac{d(u,y)}{6}$ and generates a hub in H_u with probability at most $\frac{12}{d(u,y)}$.

$$\textstyle E[|H_u|] \leq \sum_{y \in V(T_u^*)} \frac{12}{d(u,y)} \leq \sum_r |\textit{C}ut_r(T_u^*)| \, \frac{12}{r} = O(k \log D)$$

⇒ ? *⇒*

Road networks: two tree skeletons



Branching introduces non-trivial correlations between sub-paths.

We construct edge hub sets.

An edge of length ℓ is virtually subdivided into an unweighted path of length 12ℓ .

Naturally extends to directed graphs.

← ? ⇒
 1/7 13 / 21

Branching introduces non-trivial correlations between sub-paths.

Chernoff bounds: O(k log D log log n)

We construct edge hub sets.

An edge of length ℓ is virtually subdivided into an unweighted path of length 12ℓ .

Naturally extends to directed graphs.

Branching introduces non-trivial correlations between sub-paths.

 $\mathsf{Deeper} \ \mathsf{analysis} : \mathsf{O}(\mathsf{k} \mathsf{log} \, \mathsf{D} \, \mathsf{max} \, \Big\{ 1, \mathsf{log} \, \frac{\mathsf{log} \, \mathsf{n}}{\mathsf{log} \, \mathsf{D}} \Big\})$

We construct edge hub sets.

An edge of length ℓ is virtually subdivided into an unweighted path of length 12ℓ .

Naturally extends to directed graphs.

⇒? ⇒

Branching introduces non-trivial correlations between sub-paths.

Doubling metric argument : $O(k \log D \log \log k)$

We construct edge hub sets.

An edge of length ℓ is virtually subdivided into an unweighted path of length 12ℓ .

Naturally extends to directed graphs.

Branching introduces non-trivial correlations between sub-paths.

Doubling metric argument : $O(k \log D \log \log k)$

We construct edge hub sets.

An edge of length ℓ is virtually subdivided into an unweighted path of length 12ℓ .

Naturally extends to directed graphs.

Branching introduces non-trivial correlations between sub-paths.

Doubling metric argument : $O(k \log D \log \log k)$

We construct edge hub sets.

An edge of length ℓ is virtually subdivided into an unweighted path of length 12ℓ .

Naturally extends to directed graphs.

← ? ⇒ 6/7 13 / 21

Branching introduces non-trivial correlations between sub-paths.

Doubling metric argument : $O(k \log D \log \log k)$

We construct edge hub sets.

An edge of length ℓ is virtually subdivided into an unweighted path of length 12ℓ .

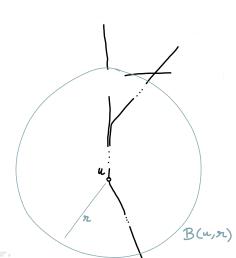
Naturally extends to directed graphs.

Highway dimension

A graph G has small highway dimension h if "long" paths in a given region go through "few" transit nodes.

$$\mathcal{P}_{\mathsf{ur}} = \left\{\mathsf{P} \mid |\mathsf{P}| > rac{\mathsf{r}}{2} \; \mathsf{and} \; \mathsf{P} \cap \mathsf{B}(\mathsf{u},\mathsf{r})
eq \emptyset
ight\}$$

 $k \leq h : Cut_r(T_u^*)$ induces a packing in \mathcal{P}_{ur} ,



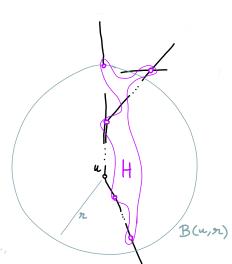
$\textbf{Highway dimension} \geq \textbf{skeleton dimension}$

$$\mathcal{P}_{\mathsf{ur}} = \left\{ \mathsf{P} \mid |\mathsf{P}| > rac{\mathsf{r}}{2} \; \mathsf{and} \; \mathsf{P} \cap \mathsf{B}(\mathsf{u},\mathsf{r})
eq \emptyset
ight\}$$

H hits \mathcal{P}_{ur} if $H \cap P \neq \emptyset$ for all $P \in \mathcal{P}_{ur}$

Highway dim. $h = \max_{ur} \min_{H \text{ hits } \mathcal{P}_{ur}} |H|$

 $k \leq h: \mathcal{C}ut_r(T_u^*) \text{ induces a packing in } \mathcal{P}_{ur},$ and $|\mathcal{C}ut_r(T_u^*)| \leq |H|.$

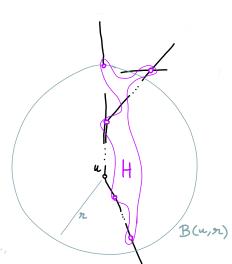


$\textbf{Highway dimension} \geq \textbf{skeleton dimension}$

$$\mathcal{P}_{\mathsf{ur}} = \left\{ \mathsf{P} \mid |\mathsf{P}| > rac{\mathsf{r}}{2} \; \mathsf{and} \; \mathsf{P} \cap \mathsf{B}(\mathsf{u},\mathsf{r})
eq \emptyset
ight\}$$

H hits \mathcal{P}_{ur} if $H \cap P \neq \emptyset$ for all $P \in \mathcal{P}_{ur}$

 $k \leq h: \mathcal{C}ut_r(T_u^*) \text{ induces a packing in } \mathcal{P}_{ur},$ and $|\mathcal{C}ut_r(T_u^*)| \leq |H|.$



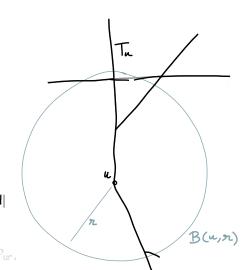
$\label{eq:highway} \textbf{Highway dimension} \geq \textbf{skeleton dimension}$

$$\mathcal{P}_{\mathsf{ur}} = \left\{ \mathsf{P} \mid |\mathsf{P}| > rac{\mathsf{r}}{2} \; \mathsf{and} \; \mathsf{P} \cap \mathsf{B}(\mathsf{u},\mathsf{r})
eq \emptyset
ight\}$$

H hits \mathcal{P}_{ur} if $H\cap P\neq\emptyset$ for all $P\in\mathcal{P}_{\text{ur}}$

 $\textbf{Highway dim. h} = \max_{ur} \min_{H \text{ hits } \mathcal{P}_{ur}} |H|$

 $k \leq h : Cut_r(T_u^*)$ induces a packing in \mathcal{P}_{ur} , and $|Cut_r(T^*)| \leq |H|$



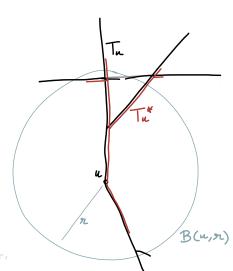
$\label{eq:highway} \textbf{Highway dimension} \geq \textbf{skeleton dimension}$

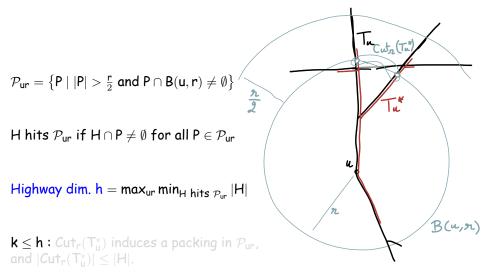
$$\mathcal{P}_{\mathsf{ur}} = \left\{ \mathsf{P} \mid |\mathsf{P}| > rac{\mathsf{r}}{2} \; \mathsf{and} \; \mathsf{P} \cap \mathsf{B}(\mathsf{u},\mathsf{r})
eq \emptyset
ight\}$$

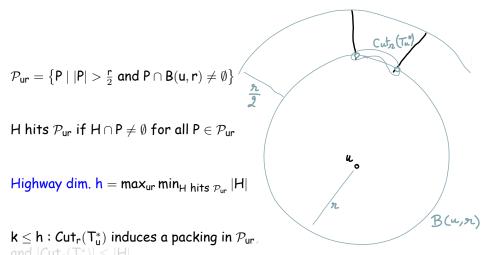
H hits \mathcal{P}_{ur} if $H\cap P\neq\emptyset$ for all $P\in\mathcal{P}_{\text{ur}}$

 $\textbf{Highway dim. h} = \max_{ur} \min_{H \text{ hits } \mathcal{P}_{ur}} |H|$

 $k \leq h : Cut_r(T_u^*)$ induces a packing in \mathcal{P}_{ur} , and $|Cut_r(T_u^*)| \leq |H|$.







 \Leftarrow ? \Rightarrow

$$\mathcal{P}_{ur} = \left\{P \mid |P| > \frac{r}{2} \text{ and } P \cap B(u,r) \neq \emptyset\right\}$$
 H hits \mathcal{P}_{ur} if $H \cap P \neq \emptyset$ for all $P \in \mathcal{P}_{ur}$ Highway dim. $h = \max_{ur} \min_{H \text{ hits } \mathcal{P}_{ur}} |H|$
$$k \leq h : Cut_r(T_u^*) \text{ induces a packing in } \mathcal{P}_{ur},$$

and $|Cut_r(T_u^*)| \leq |H|$.

Highway vs skeleton w.r.t. doubling property

A graph G is γ -doubling if any ball B(u,r) can be covered by at most γ balls with radius $\frac{r}{2}$: $\exists H$ s.t. B(u,r) $\subseteq \cup_{v \in H} B(v, \frac{r}{2})$ and $|H| \leq \gamma$.

Proposition

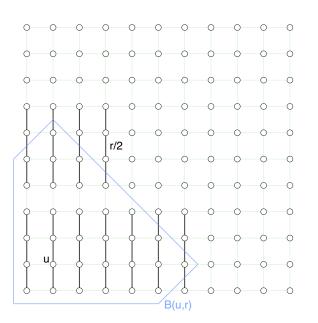
Any graph with highway dimension h and skeleton dimension k is $\min\{h+1,2k+1\}$ -doubling.

Highway vs skeleton w.r.t. doubling property

A graph G is γ -doubling if any ball B(u,r) can be covered by at most γ balls with radius $\frac{r}{2}$: $\exists H$ s.t. B(u,r) $\subseteq \cup_{v \in H} B(v, \frac{r}{2})$ and $|H| \leq \gamma$.

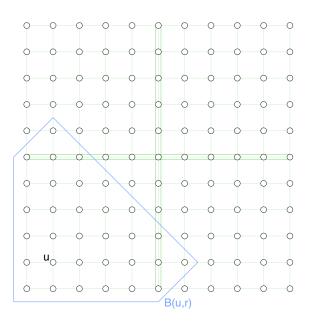
Proposition

Any graph with highway dimension h and skeleton dimension k is $\min\{h+1, 2k+1\}$ -doubling.



$$\mathbf{h} = \Theta(\sqrt{\mathbf{n}})$$

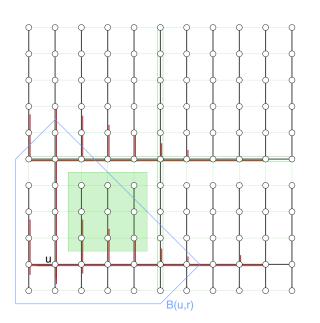
$$k = \Theta(\log n)$$



$$\mathbf{h} = \Theta(\sqrt{\mathbf{n}})$$

$$k = \Theta(\log n)$$

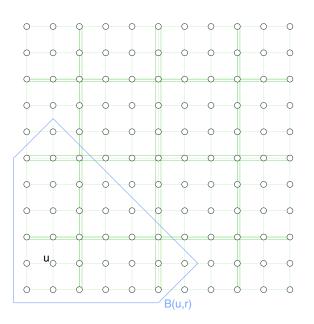
 \Leftarrow ? \Rightarrow



$$\mathbf{h} = \Theta(\sqrt{\mathbf{n}})$$

$$k = \Theta(\log n)$$

? ⇒



$$\mathbf{h} = \Theta(\sqrt{\mathbf{n}})$$

$$\mathbf{k} = \Theta(\log \mathbf{n})$$

Highway vs skeleton in Brooklyn

Packing of 172 paths

Skeleton width 48

Summary

Theorem : Hub sets of size $O(k \log D \max \left\{1, \log \frac{\log n}{\log D}\right\})$ can be constructed in randomized polynomial time for skeleton-dimension-k graphs.

Bonus : improvement of δ -preserving distance labeling in unweighted graphs (building block for o(n) distance labeling in sparse graphs [Alstrup et al. 2010]) :

For $r \geq \delta$, we have $|Cut_r(T_u^*)| = O(\frac{n}{\delta})$, and thus hub sets of size $O(\log n + \frac{n}{\delta}\log\log n)$.

Other types of transportation networks?

Skeleton dimension of random spatial networks? [Aldous 2014]

Beyond skeleton dimension?

- Small hub sets imply intersecting sub-strees with few leaves.
- Fast computation: additional property (low treewidth, small reach?).

Other types of transportation networks?

Skeleton dimension of random spatial networks? [Aldous 2014]

Beyond skeleton dimension?

- Small hub sets imply intersecting sub-strees with few leaves.
- Fast computation: additional property (low treewidth, small reach?).

Other types of transportation networks?

Skeleton dimension of random spatial networks? [Aldous 2014]

Beyond skeleton dimension?

- Small hub sets imply intersecting sub-strees with few leaves.
- Fast computation: additional property (low treewidth, small reach?).

Other types of transportation networks?

Skeleton dimension of random spatial networks? [Aldous 2014]

Beyond skeleton dimension?

- Small hub sets imply intersecting sub-strees with few leaves.
- Fast computation: additional property (low treewidth, small reach?).

 \Leftarrow ? \Rightarrow

Thanks.