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a b s t r a c t

We propose a new algorithm for the classical problem of computing the diameter of
undirected unweighted graphs, namely, the maximum distance among all the pairs of
nodes, where the distance of a pair of nodes is the number of edges contained in the
shortest path connecting these two nodes. Although its worst-case complexity is O(nm)
time, where n is the number of nodes and m is the number of edges of the graph, we
experimentally show that our algorithm works in O(m) time in practice, requiring few
breadth-first searches to complete its task on almost 200 real-world graphs.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

This paper addresses the diameter computation problem in the case of undirected unweighted graphs, where the
diameter D is defined as the maximum distance among all the pairs of nodes and the distance d(u, v) between two nodes u
and v is defined as the number of edges contained in the shortest path from u to v. In the context of real-world networks,
the textbook method based on performing a breadth-first search (for short, bfs) from every node of the graph, requires
a prohibitive cost of O(nm) time, where n is the number of nodes and m is the number of edges of the graph: indeed, it
is not rare that a real-world graph contains several millions of nodes and several millions of edges. Even more efficient
theoretical methods, like the ones presented in [1,2], turn out to be too much time consuming. We refer the reader to [3] for
a comprehensive overview of results concerning distance and diameter computation.

Some simpler algorithms have been recently proposed, for example, in [4,5]. These algorithms perform a sampling of
the eccentricity of the nodes of the graph by executing a fixed number of random bfses, where the eccentricity ecc(u) =
maxv d(u, v) for a node u. Unfortunately, no useful bound on the performed error can be provided and even experimentally
these algorithms turn out to be not always precise.

The main contribution of this paper consists of showing that bfs can indeed be an extremely powerful tool to compute
the exact value of the diameter, whenever it is used in a more clever way. In particular, we present the iterative Fringe
Upper Bound (for short, ifub) algorithm to calculate the exact value of the diameter, as a generalization of the fub method
described in [6]. This algorithm uses a subroutine to select a suitable node u and starts an iterative procedure from u: during
this procedure, ifub refines both a lower bound value lb and an upper bound value ub, such that lb ≤ D ≤ ub at any time. It
terminates when lb = ub (or ub− lb ≤ k for a specified threshold k). The starting node u could be either a randomly chosen
node, or a node with the highest degree, or a node returned by the 4-Sweep algorithm, which is a natural extension of the
method described in [7,8].
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Theworst-case time complexity of the ifub algorithm is equal to the complexity of the textbook algorithm, that is,O(nm).
However, by performing bfses in a specified ‘‘good’’ order, it turns out that we do not need to perform all the bfses as in the
case of the exhaustive textbook method. This phenomenon is quite evident in the case of real-world graphs: in these cases
our method requires only few bfses, so that its time complexity is, in practice, linear in the number of edges. In order to
support this statement, we tested the algorithm on a dataset containing about 200 real-world graphs which cover several
different application areas, including also the graphs used to validate several popular tools, such as the ones described in
[9–12], and synthetic graphs created by using somewell-knownmodels for generating random complex networks, meshes,
and electronic circuits. We then compared the performance of ifub with other approaches appeared in the literature, by
using approximately 30 naturally undirected real-world networks taken from our dataset. We implemented our algorithm
in C and in Java languages: both the source code and the dataset are available at our website amici.dsi.unifi.it/lasagne.

The paper is organized as follows. Section 2 describes the ifub algorithm and analyzes its complexity, while Section 3
shows some possible ad hoc bad cases. In Section 4 we describe the dataset, while in Section 5 we report the results of our
experiments and in Section 6 we compare ifub with other methods. We conclude in Section 7 by proposing some open
questions.

2. The iFUB algorithm

Let G = (V , E) be an undirected unweighted graph and let u be any node in V . We denote a bfs tree rooted at node u
by Tu, the height of Tu by the eccentricity ecc(u), and the set {v | d(u, v) = ecc(u)} of nodes at maximum distance ecc(u)
from u by F(u). In general, let Fi(u) be the fringe set of nodes at distance i from u (note that F(u) = Fecc(u)(u)) and let
Bi(u) = maxz∈Fi(u) ecc(z) be the maximum eccentricity among these nodes. Observe that, for any x and y in V such that
x ∈ Fi(u) or y ∈ Fi(u), we have that d(x, y) ≤ Bi(u): indeed, d(x, y) ≤ min{ecc(x), ecc(y)} ≤ Bi(u). Observe also that, for any
1 ≤ i, j ≤ ecc(u) and for any x ∈ Fi(u) and y ∈ Fj(u), we have d(x, y) ≤ i+ j ≤ 2max{i, j}. We use this latter observation to
give a termination condition for our ifub algorithm as stated below.

Theorem 1. For any 1 ≤ i < ecc(u) and 1 ≤ k < i, and for any x ∈ Fi−k(u) such that ecc(x) > 2(i− 1), there exists yx ∈ Fj(u)
such that d(x, yx) = ecc(x) with j ≥ i.

Proof. Since ecc(x) > 2(i − 1), then there exists yx whose distance from x is equal to ecc(x) and, hence, greater than
2(i − 1). If yx was in Fj(u) with j < i, then from the previous observation it would follow that d(x, yx) ≤ 2max{i − k, j} ≤
2max{i− k, i− 1} = 2(i− 1), which is a contradiction. Hence, yx must be in Fj(u) with j ≥ i. �

2.1. Exploring the bfs from node u

As previously said, Theorem 1 gives a termination condition for our ifub algorithm: indeed, it implies that if y is a node
in Fi(u) ∪ Fi+1(u) ∪ · · · ∪ Fecc(u)(u) with maximum eccentricity ecc(y) > 2(i− 1), then the eccentricity of all nodes in
F1(u)∪F2(u)∪· · ·∪Fi−1(u) is not greater than ecc(y). This suggests to traverse the bfs tree Tu in a bottom-up fashion, starting
from the nodes in F(u). At each level i, we can compute the eccentricities of all its nodes: if the maximum eccentricity e is
greater than 2(i − 1) then we can discard traversing the remaining levels, since the eccentricities of all their nodes cannot
be greater than e. This idea suggests the following approach for a node u.

• Set i = ecc(u) andM = Bi(u).
• If M > 2(i− 1), then returnM; else, set i = i− 1 andM = max{M, Bi(u)}, and repeat this step.

Note that at each iteration of the above approach, we can also update a lower and an upper bound on the diameter.
Indeed, the diameter is always greater than or equal to M (since M is always the maximum among a set of eccentricities)
and it is always less than or equal to 2(i− 1) when M ≤ 2(i− 1). This leads us to Algorithm 1 which combines all of these
observations. The algorithm receives as inputs the node u, an already known lower bound l, and a precision threshold k. It
initializes the lower bound by setting it equal to the maximum between the already known one (that is, l) and the trivial
bound obtained by performing the bfs starting from u (that is, ecc(u)). Moreover, it initializes the upper bound by setting it
equal to the trivial one obtained by performing the bfs starting from u (that is, 2ecc(u)). Then, it performs a while loop by
refining the current lower and upper bounds as discussed so far. It terminates when ub − lb ≤ k and M = lb is returned
(note that, by setting k = 0, we obtain the actual diameter D).

The running time of the algorithm is O(nm) in the worst case, as in the case of the textbook algorithm: indeed, in the
worst case, we have to perform a bfs starting from ‘‘almost’’ every node of the graph. Specifically, at each iteration of the
while loop, ub − lb decreases by at least 2, where initially ub − lb ≤ ecc(u) ≤ D: this implies that the algorithm executes
at most ecc(u)/2 ≤ D/2 iterations. Thus, letting N≥h(u) be the number of nodes v such that d(u, v) ≥ h, we have that ifub
performs at most N≥D/2(u) bfses. Since N≥D/2(u) ≤ n, we have that N≥D/2(u) is a better theoretical upper bound on the
number of bfses performed by ifub. In Section 3 we will show some ad hoc cases in which N≥D/2(u) is close to n, while in
Section 5 wewill show that the quantity N≥D/2(u) is very low in the case of real-world graphs, by choosing the starting node
u as described below.

amici.dsi.unifi.it/lasagne
amici.dsi.unifi.it/lasagne
amici.dsi.unifi.it/lasagne
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ALGORITHM 1: ifub
Input: A graph G, a node u, a lower bound l for the diameter, and an integer k
Output: A valueM such that D−M ≤ k
i← ecc(u);
lb← max{ecc(u), l};
ub← 2ecc(u);
while ub− lb > k do

if max{lb, Bi(u)} > 2(i− 1) then
returnmax{lb, Bi(u)};

else
lb← max{lb, Bi(u)};
ub← 2(i− 1);

end
i← i− 1;

end
return lb;

ALGORITHM 2: 4-Sweep
Input: A graph G
Output: A lower bound for the diameter of G and a node with (hopefully) low eccentricity
r1 ← random node of G or node with the highest degree;
a1 ← argmaxv∈Vd(r1, v);
b1 ← argmaxv∈Vd(a1, v);
r2 ← the node in the middle of the path between a1 and b1;
a2 ← argmaxv∈Vd(r2, v);
b2 ← argmaxv∈Vd(a2, v);
u← the node in the middle of the path between a2 and b2;
lowerb← max{ecc(a1), ecc(a2)};
return lowerb and u;

2.2. Selecting the starting node u

Since the starting node u affects the performance of ifub, we describe here some ways of choosing u while postponing
their experimental evaluation to Section 5.

Random selection. A first very simple method of choosing the starting node u is by picking it uniformly at random.
Degree selection.A second simpleway of selecting u is choosing a nodewith the highest degree. The intuition behind
this greedy choice is that a node uwith high degree is more likely to yield a bfs tree whose upper levels are dense.
Hopefully, N≥D/2(u) is a small fraction of the number of nodes in this case.
4-Sweep selection. A third andmore complexway to select u is by using the 4-Sweepmethod shown in Algorithm 2,
whose aim is finding a ‘‘good’’ (i.e. with low eccentricity) starting node u, by using always four bfses. Let r1 be a
node in V , let a1 be one of the farthest nodes from r1, and let b1 be one of the farthest nodes from a1. If r2 is the node
halfway between a1 and b1, then we define analogously a2 and b2. Our node u is then defined as the middle node
of the path between a2 and b2. In this paper, we will consider two different ways of selecting node r1: one method
chooses r1 uniformly at random, while the other method chooses r1 as a node with the highest degree. Intuitively,
the node u resulting from the 4-Sweep algorithm is a ‘‘center’’ of G, that is, a node whose eccentricity is close to the
radius R of G, which is defined as the minimum eccentricity (as we will see in Section 5, R ≈ D/2 for real-world
graphs). Surprisingly, wewill also see that this choice of u also provides, in the case of real-world graphs, two other
important features: a diametral node is always included in one of the first few fringe sets of u and these fringe sets
are relatively small. Finally, note that Algorithm 2 computes also an initial lower bound l = max{ecc(a1), ecc(a2)}.

3. Theoretical negative results

In this section we show that there exists an infinite family of graphs for which the 4-Sweep algorithm does not always
compute the exact value of the diameter and that there exists an infinite family of graphs for which the ifub algorithm
requires Θ(nm) time. We will make use of the following observation to build our examples. For any graph G = (V , E) of
diameter D > 1 and for any node u ∈ V , let us consider the graph G′ = (V ∪ {u′}, E ∪ E ′) where u′ is a new node and
E ′ = {(u′, v) | (u, v) ∈ E}. Clearly, we have that G′ has also diameter D: indeed, the only new distance which is introduced
in G′ is the one between u and u′, which is equal to 2 and, hence, not greater than D.

Bad graphs for 4-Sweep. The idea of the counterexample presented in [6] can be generalized in order to obtain an example
with an arbitrary diameter value in which the 4-Sweep algorithm can compute a lower bound which is not tight. For any
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Fig. 1. A bad network for the 4-Sweep algorithm (left) and a zoomed detail (right).

three odd numbers x, y and z greater than 2, we define a graph G = (V , E) in which V = {vi,j,t : 1 ≤ i ≤ x − 1, 1 ≤ j ≤
y−1, 1 ≤ t ≤ z}∪ {w, q} and E is defined as follows (see the left part of Fig. 1, where x = 7, y = 7, and z = 9). For any two
nodes vi,j,t and vi′,j′,t ′ , (vi,j,t , vi′,j′,t ′) ∈ E if and only if max{|i− i′|, |j− j′|, |t− t ′|} = 1 (see the right part of Fig. 1). Moreover
node w is connected to v1,1,(z+1)/2 and node q is connected to v(x−1)/2,y−1,(z+1)/2.

Observe that for any two distinct nodes vi,j,t and vi′,j′,t ′ , we have d(vi,j,t , vi′,j′,t ′) = max{|i − i′|, |j − j′|, |t − t ′|} ≤
max{x− 2, y− 2, z− 1}. Also, d(vi,j,t , w) = d(vi,j,t , v1,1,(z+1)/2)+ 1 ≤ max{x− 2, y− 2, (z− 1)/2}+ 1, while d(vi,j,t , q) =
d(vi,j,t , v(x−1)/2,y−1,(z+1)/2)+1 ≤ max{(x−1)/2, y−2, (z−1)/2}+1.Moreover d(w, q) = d(v1,1,(z+1)/2, v(x−1)/2,y−1,(z+1)/2)+
2 = max{(x− 3)/2, y− 2} + 2.

Thus the diameter of G is max{x− 1, y, z − 1}. If x, y, and z are such that z > x > y+ 1 > 3, then the diameter is equal
to z − 1. Moreover, if y − 1 > (z + 1)/2, y − 1 > (x + 1)/2, and x − 1 > (z + 1)/2, then the lower bound computed by
the 4-Sweep algorithm can be x− 1 instead of z − 1. Indeed, according to Algorithm 2, the following computation might be
performed.

• r1 = vx−1,1,(z+1)/2.
• a1 = w since x− 1 > (z + 1)/2− 1 and x− 1 > y− 1.
• b1 = vx−1,1,(z+1)/2 since x− 1 > (z + 1)/2 and x− 1 > y.
• r2 = v(x−1)/2,1,(z+1)/2, that is the node opposite to qwith respect to the x axis.
• a2 = q since y− 1 > (z + 1)/2− 1 and y− 1 > (x− 1)/2.
• b2 = w, since y > (z + 1)/2 and y > (x+ 1)/2.

Thus ecc(r1) = ecc(a1) = x − 1, ecc(r2) = y − 1, and ecc(a2) = y. Hence the lower bound computed by the 4-Sweep
algorithm is equal to max{x − 1, y − 1, y} = x − 1. Observe that the approximation ratio of the value returned by the
algorithm is asymptotically close to 2, which is the same ratio obtained by simply performing one bfs and returning the
diameter of the corresponding tree.

Observe that the above example can bemodified (without changing the diameter) so that the starting bad choice is more
probable (by creating several copies of the node vx−1,1,(z+1)/2), or so that the unique node of highest degree is a bad choice
(by creating several dummy neighbors of vx−1,1,(z+1)/2 and by properly adapting the position of q). Moreover, the example
can be easily generalized to higher dimensions and become a bad graph for natural extensions of the 4-Sweep algorithm,
such as the 2k-Sweep algorithm for k > 2.

Bad graphs for ifub. There exist graphs, such as the cycle shown in the left part of Fig. 2 and other graphs available at [13],
where ifub employs Θ(n) bfses. These graphs are characterized by an extreme regularity: the bfs trees at their nodes are
very similar, with the radius and the diameter being the same (namely, R = D), and all nodes having eccentricity equal to the
diameter. This implies that D/2+ 1 iterations will always be executed in the ifub algorithm, and that N≥D/2(u) is also close
to n. Thus in the case of these graphs, the complexity of ifub is Θ(nm). For instance, a cycle with n nodes (where n is odd)
has diameter n−1

2 , and any of its nodes has the same bfs tree, whose height is n−1
2 (see the right part of Fig. 2). Thus, referring

to Algorithm 1, ifub repeats its loop until 2(i− 1) ≥ n−1
2 , that is i ≥ n+3

4 , and stops the first time that 2(i− 1) < n−1
2 : the
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Fig. 2. A cycle, which is a bad graph for the ifub algorithm, (left) and a bfs tree from any of its n nodes, with n odd (right).

total number of iterations is equal to n−1
2 −

n+3
4 + 2 = n+3

4 . Since each level has two nodes, the number of bfses performed
by ifub is equal to n+3

2 and, thus, linear in the number of nodes.

Real-world networks: potentially good for ifub. In real-world networks, the difference betweenD and R seems to be very high
(actually close to the maximum, that is, D/2). Hence the number of iterations depends on the choice of the starting node u.
In particular, let C = {v ∈ V | ecc(v) = R} be the set of centers of the graph. Then, the minimum number of iterations
performed by ifub is obtained whenever u ∈ C: the number of iterations is minimum and equals R − D/2 + 1, and so the
upper bound N≥D/2(u) is also minimum.

4. Dataset

We collected 196 real-world graphs, which have been chosen in order to cover the largest possible set of network
typologies: as far as we know, this is the largest examined dataset of real-world graphs. For several of these graphs, the
exact value of the diameter was still unknown or only approximated (as in the case of the values given in [5]). We also
considered some synthetic graphs obtained from well-known generative models. We classify our graphs according to the
following categories.

1. Biological networks. These graphs refer to databases of physical, genetic and biological interactions [14–24].
2. Citations networks. Nodes represent papers and edges represent citations [5,25,26].
3. Collaboration networks. Nodes represent people and edges represent collaborations among them [5,14,27].
4. Communication networks. Nodes represent people and edges represent communication among them [5,28,29].
5. Product co-purchasing networks. Nodes represent products and edges represent commonly co-purchased products [5].
6. Autonomous systems graphs. These are the graphs of the Internet, typically referring to connections among Internet

Service Providers [5,14].
7. Internet peer-to-peer networks. Nodes represent computers and edges represent communication among them [5,30].
8. Web graphs. Nodes represent web pages and edges are hyperlinks [5,30–32].
9. Social networks. Nodes represent people and edges represent interactions between them [5,27–29,33].

10. Road networks. Nodes represent intersections and endpoints and edges represent roads connecting these intersections
and endpoints [5].

11. Words adjacency networks. Nodes represent words and edges represent their adjacency in the text [15,34].
12. Meshes and electronic circuits. These graphs correspond to adjacency matrices derived from finite element meshes or

stiffness matrices, or they are calculated during simulations for path optimization in digital electronic circuit projects
[15,35].

13. Synthetic graphs. These graphs are generated according to the following evolution models: Erdős–Rényi [36], random
geometric [37], forest-fire [11] and Kronecker [10].

An important feature of our dataset is that almost all graphs in it are sparse, that is,m = O(n).

5. Experiments

When the graphs are so huge that no exhaustive computation can be done, a random set of nodes can be randomly
sampled and the maximum eccentricity among these nodes can be returned as a lower bound for the diameter. We have
performed 1000 random bfses for each of the 196 graphs (this is the same number of bfses used to compute the values
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Table 1
A summary of the results obtained by ten executions of the 4-Sweepr algorithm, i.e. the 4-Sweepwhere r1 is randomly chosen, and by the execution of the
4-Sweephd algorithm, i.e. the 4-Sweepwhere r1 is a node with the highest degree.

Number of graphs in which x over 10 experiments Number of graphs in which
4-Sweepr has returned a tight lower bound 4-Sweephd has returned

Networks Total x = 10 10 > x ≥ 5 5 > x > 0 x = 0 a tight lower bound
Autonomous systems graphs 2 1 1 0 0 2
Biological networks 48 35 7 4 2 47
Citations networks 5 4 1 0 0 5
Collaboration networks 13 11 0 2 0 13
Communication networks 38 29 7 2 0 37
Internet peer-to-peer networks 1 1 0 0 0 1
Meshes and electronic circuits 34 26 5 2 1 22
Product co-purchasing networks 4 4 0 0 0 4
Road networks 3 2 1 0 0 2
Social networks 11 10 1 0 0 11
Synthetic graphs 18 15 2 1 0 15
Web graphs 9 8 1 0 0 9
Words adjacency networks 4 4 0 0 0 4
Others 6 5 1 0 0 3
Total 196 155 27 11 3 175

reported in [5]). For 101 graphs the returned lower bound coincides with the diameter of the graph: however, only 34 of
these graphs have more than 10000 nodes. On the other hand, in the remaining 95 graphs for which the lower bound is not
tight, 88 graphs have more than 10000 nodes. It means that, as expected, the size of the random sample, that is the number
of bfses that have to be performed, has to depend on the size of the graph.

5.1. Obtaining tight lower bound via 4-Sweep

The 4-Sweep algorithm computes a lower bound on the diameter by using always 4 bfses, independently of the size of
the graph. Nevertheless, its performance is much better than the random sampling method. In particular, we have verified
this statement on all the 196 graphs by considering the two different strategies for selecting the starting node r1, described
at the end of Section 2.2.

4-Sweepwith random starting node (for short 4-Sweepr). For each of the 196 graphs, we executed the 4-Sweep algorithm ten
times (see the central columns of Table 1) by choosing r1 uniformly at random.1 For 155 graphs, in all the ten experiments the
lower bound computed by 4-Sweep is equal to the diameter and for 193 graphs in at least one among the ten experiments
the lower bound is tight. Hence, in the case of 3 networks (i.e. a mesh and two biological networks), no experiment has
returned a lower bound equal to the diameter.

4-Sweep with highest degree starting node (for short 4-Sweephd). For each of the 196 graphs, we executed the 4-Sweep
algorithm by choosing r1 as a nodewith the highest degree. In almost all graphs in the dataset there is one node ofmaximum
degree: the exceptions are 19 meshes (where a linear number of nodes have the same degree), 2 road networks (with
respectively 4 and 5 nodes with maximum degree), 7 synthetic networks (with at most 3 nodes with maximum degree), 2
biological networks (with respectively 5 and 8 nodes with maximum degree). In these particular cases ties are broken by
considering the node with the smallest identifier: however similar results can be observed by considering other choices. For
175 graphs the computed lower bound is tight (see the rightmost column of Table 1). In the case of 16 graphs the error is at
most 2, while in the case of 4 meshes the error is between 3 and 9, and in the case of one road network the error is 14.

5.2. Computing the diameter via ifub

For each of the 196 graphs, we executed the ifub algorithm to calculate the exact value of the diameter, by setting k = 0
and by considering the four different strategies to select the starting node u described in Section 2.2.

ifub by using 4-Sweepr (for short ifub+4-Sweepr). For each graph we executed the ifub algorithm ten times by using
Algorithm 2, with r1 chosen uniformly at random, to select the starting node u. In Table 2(a) we consider the average number
v of bfses executed over the ten experiments and in Table 3(a) we consider the corresponding ratio v/n.2 Observe that given

1 No significant variance was observed by running a larger number of experiments because central nodes are easily detected by the 4-Sweep algorithm.
2 The inverse of the ratio v/n can be considered as the gain of the ifub algorithm with respect to the textbook method. It is worth noting that this gain

seems to increase for increasing values of n in almost all the network categories apart from very few ones.
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Table 2
Computing the diameter via ifub.

(a) Results obtained by ten executions of ifub+4-Sweepr , i.e. ifub by using 4-Sweepr.

Number of graphs in which ifub has performed v bfses on the average
v Number n of nodes

Total n ≤ 103 103 < n ≤ 104 104 < n ≤ 105 105 < n ≤ 106 106 < n
v = 5 29 2 8 9 10 0
5 < v ≤ 100 121 17 44 43 11 6
100 < v ≤ 1000 21 1 3 10 4 3
1000 < v ≤ 104 17 – 4 12 1 0
104 < v 8 – – 3 3 2

(b) Results obtained by the execution of ifub+4-Sweephd, i.e. ifub by using 4-Sweephd.

Number of graphs in which ifub has performed v bfses
v Number n of nodes

Total n ≤ 103 103 < n ≤ 104 104 < n ≤ 105 105 < n ≤ 106 106 < n
v = 5 35 11 4 11 9 0
5 < v ≤ 100 115 25 29 42 14 5
100 < v ≤ 1000 20 2 4 8 3 3
1000 < v ≤ 104 19 – 4 13 2 0
104 < v 7 – – 3 2 2

(c) Results obtained by the execution of ifub+hd, i.e. ifub with starting node of highest degree.

Number of graphs in which ifub has performed v bfses
v Number n of nodes

Total n ≤ 103 103 < n ≤ 104 104 < n ≤ 105 105 < n ≤ 106 106 < n
v = 2 22 10 3 7 2 0
2 < v ≤ 5 38 14 13 6 5 0
5 < v ≤ 100 74 12 13 28 14 7
100 < v ≤ 1000 17 2 4 9 2 0
1000 < v ≤ 104 28 – 8 19 1 0
104 < v 14 – – 8 6 0

a graph with n nodes, the number of bfses ranges between 5 (that is, the case in which Algorithm 1 returns the exact value
of the diameter without entering the while loop), and O(n) (that is, the case in which ifub degenerates to the textbook
algorithm). As shown in Table 3(a), only in the case of 22 graphs, ifub is forced to performmore than 10% of the bfses of the
textbook method: these networks are mostly meshes and electronic circuit simulation networks, and synthetic graphs. For
the great majority of the networks, instead, ifub performs less than 1% of the bfses executed by the textbook method.

ifub by using 4-Sweephd (for short ifub+4-Sweephd). For each graph we executed the ifub algorithm by using again
Algorithm 2 to select the starting node, with r1 chosen as a node with the highest degree. In Table 2(b) we report the
number v of bfses executed by ifub+4-Sweephd to calculate the exact value of diameter, and in Table 3(b) we consider the
ratio v/n. As shown by Table 3(b), just for 19 graphs, ifub is forced to perform more than 10% of the bfses of the textbook
method.

ifub by starting from the highest degree node (for short ifub+hd). For each graphwe executed the ifub algorithm by selecting
as starting node one with the highest degree (without using Algorithm 2). Again, Table 2(c) reports the corresponding
number v of bfses employed by ifub+hd to calculate the exact value of diameter, and Table 3(c) shows the corresponding
ratio v/n. Note that in this case the minimum number of bfses employed by ifub can be 2. By looking at Table 3, ifub+hd
seems to be less effective than ifub+4-Sweephd: however, we will see in the next section that if we restrict our attention
only to the naturally undirected networks of the dataset, this is not true any more.

ifub by starting from a random node (for short ifub+r). For each graph we executed the ifub algorithm by selecting a
randomly chosen starting node. We do not report the corresponding entries in Tables 2 and 3 since the results are very
unstable. For the sake of completeness and in order to underline here the importance of a good starting strategy, we observe
that, even if sometimes the number of bfses is relatively small with respect to the number of nodes, from time to time
this version of ifub degenerates to the textbook algorithm so that, especially in the case of networks with more 100,000
nodes, the computation can require a huge amount of time and sometimes even days. If we restrict ourselves to the 156
networks having no more than 100,000 nodes, in the case of about 60 networks the average number of bfses executed over
ten experiments is more than 10% of n, and in the case of about 80 networks the maximum number of bfses executed over
ten experiments is more than 20% of n.
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Table 3
Performance ratio: ifub with respect to the textbook algorithm. For each kind of networks is reported how many graphs have a ratio v/n, i.e. number of
bfses over number of nodes, less than 0.001, in between 0.001 and 0.01, in between 0.01 and 0.1, and greater than 0.1. In the case of (a), v is the average
number of bfses.

(a) Results obtained by ten executions of ifub+4-Sweepr , i.e. ifub by using 4-Sweepr.

Number of networks having performance ratio v/n
Networks Total v/n ≤ 0.001 0.001 < v/n ≤ 0.01 0.01 < v/n ≤ 0.1 0.1 < v/n ≤ 1
Autonomous systems graphs 2 2 0 0 0
Biological networks 48 4 22 22 0
Citations networks 5 4 0 1 0
Collaboration networks 13 4 7 2 0
Communication networks 38 26 7 4 1
Internet peer-to-peer networks 1 0 0 0 1
Meshes and electronic circuits 34 5 8 8 13
Product co-purchasing networks 4 4 0 0 0
Road networks 3 1 0 2 0
Social networks 11 9 0 2 0
Synthetic graphs 18 3 5 5 5
Web graphs 9 8 1 0 0
Words adjacency networks 4 1 3 0 0
Others 6 2 1 1 2
Total 196 73 54 47 22

(b) Results obtained by the execution of ifub+4-Sweephd, i.e. ifub by using 4-Sweephd.

Number of networks having performance ratio v/n
Networks Total v/n ≤ 0.001 0.001 < v/n ≤ 0.01 0.01 < v/n ≤ 0.1 0.1 < v/n ≤ 1
Autonomous systems graphs 2 2 0 0 0
Biological networks 48 5 31 12 0
Citations networks 5 3 2 0 0
Collaboration networks 13 5 6 1 1
Communication networks 38 26 8 3 1
Internet peer-to-peer networks 1 0 0 0 1
Meshes and electronic circuits 34 8 7 9 10
Product co-purchasing networks 4 3 1 0 0
Road networks 3 1 0 2 0
Social networks 11 9 0 2 0
Synthetic graphs 18 7 5 2 4
Web graphs 9 9 0 0 0
Words adjacency networks 4 2 2 0 0
Others 6 1 2 2 1
Total 196 81 64 33 18

(c) Results obtained by the execution of ifub+hd, i.e. ifub by starting from the node with highest degree.

Number of networks having performance ratio v/n
Networks Total v/n ≤ 0.001 0.001 < v/n ≤ 0.01 0.01 < v/n ≤ 0.1 0.1 < v/n ≤ 1
Autonomous systems graphs 2 2 0 0 0
Biological networks 48 7 33 8 0
Citations networks 5 4 1 0 0
Collaboration networks 13 8 4 1 0
Communication networks 38 12 15 11 0
Internet peer-to-peer networks 1 0 0 1 0
Meshes and electronic circuits 34 1 2 6 25
Product co-purchasing networks 4 4 0 0 0
Road networks 3 0 0 0 3
Social networks 11 9 2 0 0
Synthetic graphs 18 7 3 0 8
Web graphs 9 7 1 1 0
Words adjacency networks 4 3 1 0 0
Others 6 2 2 0 2
Total 196 66 64 28 38
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Table 4
Naturally undirected networks and their largest connected components.
Category Name Nodes Edges Diameter
Collaboration jazz 198 5484 6
Biological iPfam 513 18740 12
Biological psimap 526 19048 11
Biological Rattus_norvegicus 1415 3570 19
Biological interdom 1654 157832 8
Biological string 2575 53514 9
Words adjacency japaneseBookInter_st 2698 15990 8
Collaboration geom 3621 18922 14
Biological Mus_musculus 3745 10340 20
Biological ppi_dip_swiss 3766 23844 12
Biological HC-BIOGRID 4039 20642 23
Collaboration ca-GrQc 4158 26844 17
Words adjacency darwinBookInter_st 7377 88410 8
Words adjacency frenchBookInter_st 8308 47664 9
Collaboration ca-HepTh 8638 49612 18
Biological hprd_pp 9219 73800 14
Collaboration ca-HepPh 11204 235238 13
Words adjacency spanishBookInter_st 11558 86100 10
Collaboration ca-AstroPh 17903 393944 14
Biological dip20090126_MAX 19928 82404 30
Collaboration ca-CondMat 21363 182572 15
Collaboration Cond_mat_95-99 22015 117156 12
Biological ppi_gcc 37333 271236 27
Autonomous systems itdk0304_rlinks 190914 1215220 26
Collaboration dblp20080824_MAX 511163 3742140 22
Collaboration imdb 880455 74989272 14
Autonomous systems as-skitter 1694616 22188418 31

6. Comparing iFUB with other algorithms

In this section we will focus our attention on the subset of naturally undirected real-world networks included in our
dataset, in order to run a fair comparison with other algorithms. The categories involved are biological networks (in
particular, protein interaction networks), collaboration networks, words adjacency networks, and autonomous systems
graphs (see Section 4). For each graph, we considered its largest connected component: the restricted dataset is shown
in Table 4, where we report the category and the name of the network, and the number of nodes, the number of edges,
and the diameter of its largest connected component. We have chosen to use in the experiments the ifub+4-Sweephd and
the ifub+hd strategies. Observe that all the networks included in this restricted dataset have one node of maximum degree,
apart fromiPfam (with 5nodes ofmaximumdegree) andinterdom (with 8nodes ofmaximumdegree): in the case of these
two networks, we have experimentally verified that the performances of ifub+hd and of ifub+4-Sweephd are independent
of the choice of the starting node.

Comparing ifub with upper bound computation methods. The lower bounds provided by the 2-Sweep or the 4-Sweep
methods turn out to be, in practice, almost always tight: however, there is, in theory, no guarantee about the quality of
the approximation. For this reason, some methods have been proposed in [6,8] in order to find an upper bound on the
diameter which bounds the absolute error or even validates the tightness of the lower bound. All these methods return
the diameter of the bfs tree of a node r , i.e. Tr . In particular, two methods, called rtub and htub respectively, have been
presented in [8]: rtub selects r as a random node, while htub chooses r as one node with the highest degree. Thus, both
rtub and htub execute two bfses: one bfs from r is used to create Tr and one bfs is used to compute the diameter of Tr . The
other two methods, called mtub and mtubhd respectively, are evolutions of a method proposed in [6]: in the case of mtub,
r is the node returned by 4-Sweepr, while in the case of mtubhd r is the node returned by 4-Sweephd. Hence, both mtub
and mtubhd execute six bfses: four bfses are used to execute 4-Sweep and to select r , one bfs from r is used to create Tr ,
and one bfs is used to compute the diameter of Tr .

Table 5 shows the upper bounds found by usinghtub andmtubhd, and the randomizedmethodsmtub and rtub: in order
to run a fair comparison, we have applied the following schema in the case of the randomizedmethods. Let v be the number
of bfses performed by ifub in order to calculate the diameter: in each experiment, we have repeated at least ⌈v/6⌉ times
themtub and rtubmethods. Specifically, we have executed ten experiments: we report the best upper bound over all these
experiments in Table 5, along with the number of runs out of ten in which the returned upper bound is tight. Consistently
with [6], mtub and mtubhd seem to be more effective in finding better upper bounds rather than rtub and htub. However
in the great majority of the networks, all these methods are not able to find a tight upper bound (see the rightmost part of
Table 5). Finally, it is worth observing that the 2-Sweep or 4-Sweep methods return the height of a bfs tree and that, in any
graph, there is always at least one node such that the height of its bfs tree is equal to the diameter. On the other hand, the
upper bound based methods return the diameter of a bfs tree, and there are infinite graphs such that no nodes have a bfs
tree whose diameter is equal to the diameter of the graph (note that this is the case of the graph shown in Fig. 2).
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Table 5
Comparing ifub with other methods.

Exact Algorithms Upper Bound Algorithms
ifub+
4-Sweephd ifub+hd tk mtub mtubhd rtub htub

# Runs # Runs
(out of 10) (out of 10)

Best s.t. Best Best s.t. Best
Name D bfses bfses bfses UB UB=D UB UB UB=D UB
jazz 6 6 3 7 7 0 7 8 0 8
iPfam 12 5 4 4 12 10 12 12 3 13
psimap 11 8 13 6 12 0 12 12 0 12
Rattus_norvegicus 19 8 17 4 20 0 20 20 0 23
interdom 8 7 3 7 8 6 9 8 1 8
string 9 30 20 15 10 0 12 11 0 10
japaneseBookInter_st 8 7 4 13 9 0 10 10 0 9
geom 14 23 7 6 14 1 15 14 1 16
Mus_musculus 20 26 3 6 20 4 21 21 0 22
ppi_dip_swiss 12 7 3 4 13 0 13 13 0 14
HC-BIOGRID 23 17 5 5 24 0 25 23 1 25
ca-GrQc 17 26 11 14 20 0 20 19 0 19
darwinBookInter_st 8 5 3 4 9 0 8 9 0 8
frenchBookInter_st 9 21 6 12 10 0 11 10 0 11
ca-HepTh 18 10 9 17 20 0 20 20 0 21
hprd_pp 14 7 3 8 16 0 16 16 0 16
ca-HepPh 13 39 10 20 15 0 15 15 0 15
spanishBookInter_st 10 5 2 4 10 10 10 11 0 11
ca-AstroPh 14 8 12 19 15 0 15 17 0 16
dip20090126_MAX 30 8 33 7 30 10 31 30 3 34
ca-CondMat 15 31 6 14 16 0 18 17 0 17
Cond_mat_95-99 12 4485 78 577 15 0 16 15 0 15
ppi_gcc 27 7 24 7 27 10 27 28 0 30
itdk0304_rlinks 26 9 11 11 28 0 28 28 0 29
dblp20080824_MAX 22 17 13 30 25 0 26 24 0 25
imdb 14 20 19 33 16 0 16 16 0 16
as-skitter 31 7 12 5 32 0 32 34 0 40

Comparing ifub with Takes–Kosters algorithm. Recently and independently from this work, a new algorithm to compute
the diameter of large real-world networks has been proposed in [38]. The algorithm, which we refer to as tk, maintains a
lower bound ∆L and an upper bound ∆U of the diameter D and, for each node w, it maintains a lower bound εL[w] and an
upper bound εU [w] of its eccentricity ecc(w). Moreover, it maintains a set W of nodes, at the beginning initialized with V ,
that are candidate extremes of a path whose length is the diameter. At the beginning all the lower and upper bounds are
respectively initializedwith 0 and n. At each step the node u, withminimum lower bound orwithmaximumupper bound, is
selected from setW :∆L is updatedwithmax{∆L, ecc(v)},∆U is updatedwithmin{∆U , 2ecc(v)}, and, for any nodew, εL[w]
is updated with max{εL[w], ecc(v)− d(v, w), d(v, w)} and εU [w] is updated with min{εU [w], ecc(v)+ d(v, w)}. Then, the
nodes v ∈ W such that εU [v] ≤ ∆L and εL[v] ≥ ∆U/2 are removed from W , since a selection of v cannot improve the
bounds ∆L and ∆U . The algorithm terminates and returns ∆L when ∆L is equal to ∆U or the set W is empty. In Table 5, we
report for each network the number of bfses performed by tk to compute the diameter, by applying the implementation
given by the authors. In the case of the 27 networks in our dataset, the more effective approach is ifub+hd: it requires less
bfses than tk in the case of 17 networks, and more bfses than tk in the case of just 7 networks (while the two methods
require the same number of bfses in the remaining 3 networks).3

7. Conclusions and future work

The main contribution of this paper is the definition of a new algorithm, called ifub, for the computation of the diameter
of undirected unweighted graphs. Even if, in the worst case, the time complexity of ifub is O(nm), this algorithm in practice

3 A comment is in order on the parallelization of ifub and of tk to speed up the computation: indeed, while the selection process in tk seems to be
inherently sequential, the bfses of the nodes at the same level i required by ifub to compute Bi(u) can be performed in parallel.
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executes in O(m) time when applied to real-world networks (and, thus, in O(n) time because of the sparsity of these
networks). This notable performance is also, but not only, due to the high centrality of the highest-degree nodes in real-
world networks and to the performance of the 4-Sweep method, that by means of only 4 bfses is able to compute a lower
bound for the diameter, which is in practice almost always tight. Intuitively the selection of the highest-degree node and the
usage of 4-Sweep, limit the variability of the performances of ifub. As a result, the combination of ifub, with the selection of
the highest degree node or with 4-Sweep is a quite effective method to compute the diameter of huge real-world networks
of unknown diameter at the time of our experiments.

The ifub algorithm has been recently integrated into theWebGraph Java library [9], and it has been used to compute the
exact diameter of several quite huge subgraphs of the Facebook graph: the good news is that a highly parallel version of our
method was able to compute the diameter of the largest subgraph (approximately 149.1M of nodes and 15.9G of edges)
in twenty minutes [39]. We also studied how to apply variants of the ifub algorithm to weighted graphs and we refer the
reader for a thorough discussion given in [40].

The good performance of our algorithm seems to be related to the structure of the real-world networks, in which we
have observed a very particular phenomenon: the radius of these networks is usually close to the minimum possible
value with respect to their diameter; moreover, the set of the farthest nodes from nodes with low eccentricity is usually
small. Understanding the reasons of such structural properties in real-world networks is an interesting open problem to be
addressed in the future.

The reason of the accuracy of the 4-Sweep algorithmwhile computing lower bounds for the diameter and nodeswith low
eccentricity is also an interesting open problem. Indeed, a way to characterize graphs for which 4-Sweep returns the exact
value of the diameter is still unknown even if some steps have been performed by [41]. If this will be better understood,
then it could be interesting to understand also the reasons for which the real-world networks exhibit this characterizing
behavior. Moreover it could be interesting to find a generalized example with arbitrary diameter value in which the lower
bound computed by 4-Sweep is about half the diameter for any computation.
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